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One of the significant challenges facing the aviation sector is the management of risks arising from its 

flight operations, especially in the approach and landing phases, where pilot experience and training are 

of great importance and where the most significant incidents for air safety occur. Therefore, this paper 

proposes a model inspired by the structure of a Fuzzy ELECTRE model for managing the operational 

risks that arise in the approach and landing phases that can lead to safety events. Thanks to the analysis 

of the literature collected, the management criteria and risk parameters to be taken into account for these 

two flight phases were shown following air safety manuals such as the International Civil Aviation 

Organization (ICAO) manual, and where the data obtained was obtained qualitatively thanks to the 

implementation of surveys with expert pilots, whose information served as the primary input for the 

characterisation of risks. Following the structure of the proposed model, five (5) reference risk scenarios 

management were constructed using the previous information, and an analysis of the dominance and 

discrepancy of a risk scenario vs. the previously established reference scenarios was carried out. Finally, 

it can be concluded that the proposed model allowed the quantitative-qualitative characterisation for 

managing the most relevant risks in the approach and landing phases, integrating the expertise of experts 

in this area. 

 

Keywords: Data analysis, Management Risks, Operational risks, Aviation safety, Approach and landing 

phases, Fuzzy Electre model 

 

 

INTRODUCTION  

Today, with technological advances and globalisation, identifying a situation that generates negative consequences 

is a competitive advantage for achieving companies' strategic objectives, and operational risks are the most common 

(Loyaga & Malqui, 2019). According to the Basel II agreements (2006), operational risks generate losses based on 

inadequacy and/or failures in the processes, whether due to human, technical, or external factors and are primarily 

applied in the financial sector. In addition, Faberio (2022) defines operational risks as "a group of components such as 

procedures, policies, organisational structure, through which companies identify, control, measure, and monitor them". 

In the aeronautical sector, operational risk management is based on operational safety, which aims to "proactively 

mitigate operational safety risks before they result in aviation accidents or incidents" (ICAO, 2018). According to Zhang 

& Mahadevan (2021), its management has been based on fatal accidents in the industry over time. Although its frequency 
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is not the highest, its impact has become catastrophic, causing loss of human lives, economic losses, environmental 

damage, and severe media and political repercussions (Bills et al., 2023, p. 1). The latest safety report of the International 

Civil Aviation Organization (ICAO) indicates that the accident rate has shown unstable behaviour over the last ten (10) 

years, maintaining three (3) accidents per million departures. However, this rate has increased in the last three (3) years, 

thanks to air traffic recovery after the COVID-19 pandemic (ICAO, 2023). While the desirable goal of aviation operations 

would be the elimination of severe accidents and incidents, which are unattainable, operational safety systems have been 

the cornerstone for safety management and risk analysis to strike a balance between "production" and "protection" in the 

aeronautical sector (Ríos et al., 2018, p. 74). The latter shows that managing the risks associated with aviation operations 

is still a management and technological challenge.   

Thanks to the implementation of risk management systems in aeronautical operations, it has been possible to 

determine the risks that have arisen over the years based on historical accidents. According to the International Air 

Transport Association (2022), the majority of accidents recorded between 2017 and 2021 occurred during the approach 

phase (10%) and landing (60%), both fatal and non-fatal. On the other hand, in the latest Statistical Summary of 

Commercial Jet Airplane Accidents by Boeing (Boeing, 2023), in recent decades, most safety-related accidents have 

focused on the approach (15%) and landing (31%) phases.  

In light of the above, risk assessment during the approach and landing phases is essential to comply with safety 

parameters required by national and international civil aviation organisations. In recent years, proactive risk 

identification methodologies with quantitative and qualitative approaches have been implemented to detect anomalous 

behaviours and quantify the associated risk in flight operations, ground operations, or their combination (Odisho et 

Truong, 2021; Zang & Mahadevan, 2019). Among proactive performance indicators, various tools and models within 

data analytics record detailed and comprehensive information throughout a flight, relying on anomaly detection 

techniques for this collected information (Zhao et al., 2021). To detect possible links between recorded data and the risk 

of operational safety events or accidents during flight, many researchers have implemented different mathematical 

models (Rey et al., 2021), many of which, through statistical analysis, enable an operator to use this information to assess 

the overall state of operational performance (Puranik, 2018). 

According to Taghipour et al. (2020), many studies have focused on the implementation of machine learning models 

as tools to address multiple problems through data-driven methodologies, aiming to assist aviation safety experts in 

facilitating the process of extracting data from aviation incidents (Dong et al., 2021, p. 1). Zang & Mahadevan (2019) 

developed a model using the risk level to measure the severity of operational events during flight. Avrekh et al. (2020) 

implemented an unsupervised generative model for anomaly detection in high-dimensional time series data to detect 

operational anomalies in flight. In another group of articles, Benoit et al. (2023) demonstrate a data-driven methodology 

for estimating the collision risk probability of aircraft in the flight phase, combining Monte Carlo simulation and Extreme 

Value Theory (EVT), effectively assessing modelled collision risk probabilities. Caetano (2022) identified outliers that 

could influence the safety of aviation operations through operational and meteorological data using a random forest 

classification model with an accuracy exceeding 96%, while Midtford et al. (2022) created a runway assessment system 

with a decision tree classification model to identify slippery conditions of aircraft on icy runways and a regression model 

to predict the slipperiness level, using meteorological data and runway reports to reduce the percentage of crashes and/or 

runway excursion or incursion. 

In the context of the literature review, this article proposes a model based on data inspired by the structure of the 

Fuzzy ELECTRE method. For managing aeronautical operational risks, the proposed model uses the selection of risk 

alternatives or scenarios aims to improve decision-making in the face of risk management in aeronautical approach and 

landing operations to determine preference and priority within complex problems by integrating both qualitative and 

quantitative data (Memarzadeh et al, 2020). The results obtained by the proposed model demonstrate its stability in 

characterising the risk vs. the operational management in the approach and landing phases using different risk scenarios, 

integrating both qualitative information from experts and quantitative information from the International Civil Aviation 

Organization (ICAO) and International Air Transport Association (IATA) manuals. 

Accordingly, the article will present a first section introducing the literature and contextualising the problem 

according to scientific literature in this knowledge area. In a second part, theoretical concepts that underpin the 

characterisation of risk associated with aeronautical operations will be presented according to the structure of the 

proposed model. In a third part, an analysis and discussion of results will be conducted to evaluate the model's stability 

in characterising risk, and finally, a series of conclusions to guide future work in this knowledge area. 
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METHODOLOGY 

Risk management plays a fundamental role in the aviation sector due to the importance of ensuring flight safety, 

preventing catastrophic events that could endanger the lives of people on board and on the ground, and preserving the 

integrity of aircraft (Chan, 2023). In order to contribute to solving the problem, the following methodology is proposed. 

Experimental Study Design 

For creating a model that allows risk management in operational safety in the approach and landing phases, five (5) 

factors were taken: human factors, procedures in the approach and landing phases, technical factors, and external factors. 

According to the review of regulations and literature, the total number of factors was assessed based on 18 risk criteria, 

as indicated in Table 1. 

 
Table 1. Risk factors and criteria 

 

      
In order to evaluate these factors, each criterion was analysed by six experts from the aviation industry (pilots who 

fly different types of aircraft and have different years of flight experience, located in different cities in Colombia and the 

United States, such as Bogotá, Medellín, and Miami). Based on this analysis, a structured survey was created with 38 

questions for each criterion and factor, as shown in Table 1, in line with the bibliographic sources stipulating global 

aviation operational safety regulations (ICAO, 2018). These questions were generated based on possible risk scenarios to 

which pilots may be exposed, where the response options are directly related to the Saaty scale (Table 3). These are the 

multiple options that the pilots had to give their opinion according to their perception and experience in each of the cases 

exposed in the questions posed. These surveys were conducted virtually in October 2023, with an approximate duration 

of one hour per pilot surveyed, where the survey intends to identify the critical factors of risk management in approach 

and landing operations. 

For the analysis and validation of the proposed model, a qualitative description of each risk scenario was undertaken 

according to the impact criteria defined by the International Civil Aviation Organization (ICAO) (Table 2). This table 

delineates the structure of each risk scenario based on the categories that align with Basel agreements regarding 

operational risk management (AA, A, BB, B, C). Furthermore, it incorporates qualitative information from expert pilots 

through the previously defined structured survey. 

 

  

Factor Criteria 

HUMAN FACTOR 

Pilot training and competence 

Pilot decision making 

Situational awareness 

Fatigue 

CRM 

Application of procedures, checklists and operating manuals 

APPROACH PHASE 

PROCEDURES 

Descent profile of the aircraft 

Approach type 

LANDING PHASE 

PROCEDURES 

Flaps and landing gear management 

Minimum Decision Altitude (MDA) and Decision Altitude (DA) 

Landing speed 

Threshold of the runway 

TECHNICAL FACTOR 
Software and systems status 

Aircraft structure condition 

EXTERNAL FACTORS 

Runway conditions for landing 

Radio aids available on the airfield 

Meteorological conditions 

Obstacles and BASH (Bird Aircraft Strike Hazard) on the approach and landing 

trajectory 
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Table 2. Qualitative description of operational risk scenarios 

Gravity Significance 

Catastrophic (C) 
This risk scenario occurs when, during ground or flight operations, the aircraft or equipment and human 

lives are lost. 

Hazardous (B) 

This risk scenario may arise from a significant reduction in operational safety margins, physical stress, or a 

workload to the extent that reliance on operational personnel to perform their tasks accurately or 

completely can no longer be assured. Severe injuries to individuals and/or substantial damage to the aircraft 

can occur during operations, whether on the ground or in flight. 

Major (BB) 

This risk scenario may arise from a significant reduction in operational safety margins, and it's related to 

the operational personnel's capacity to tolerate adverse operating conditions, such as an increase in 

workload or conditions affecting their efficiency. A severe incident and individual injuries may occur 

during ground or flight operations. 

Minor (A) 
This risk scenario occurs when discomfort or operational limitations arise during either ground or flight 

operations, prompting the pilot or crew to implement emergency procedures or a minor incident occurring. 

Negligible (AA) In this risk scenario, a few consequences may arise that may impact individuals or the aircraft. 

Note. Adapted scale from the Manual of Operational Safety Management (ICAO, 2018). 

     
The responses from the consulted experts regarding each risk scenario's criteria were qualitatively characterised 

using the Saaty scale (Table 3) (Comas et al., 2020). 

 
Table 3. LT decision-maker's view and decision-making (Rouyendegh & Erol, 2012) 

LT Scale 

Extremely good (EG) 9 

Very good (VG) 7 

Good (G) 5 

Medium bad (MB) 3 

Bad (B) 2 

Very bad (VB) 1 

 

Note. Adapted scale from the Intuitionistic Fuzzy ELECTRE model. International Journal of Management Science and 

Engineering Management (Rouyendegh & Erol, 201, p. 5). 

Fuzzy ELECTRE model 

For the characterisation of a risk scenario 𝑃𝑜, this section proposes a model inspired by the structure of a Fuzzy 

ELECTRE model, which incorporates a series of concordance and discrepancy matrices to select a risk scenario that 

enables risk management with scenario 𝑃𝑜 (Peña et al., 2018). It is important to highlight that the Fuzzy ELECTRE model 

is commonly used to address the uncertainty generated by the large amount of qualitative information from experts in 

decision-making across different knowledge areas. Selecting a desirable option is based on a set of concordance and 

discrepancy matrices (Rouyendegh & Erol, 2012). Due to its design, the proposed model integrates a series of criteria for 

characterising a risk scenario through linguistic variables in accordance with the Saaty scale, as outlined in Table 3. 

Modelling Criteria as Linguistic Variables. 

According to each of the qualities that define the Saaty scale, the structure of the fuzzy sets associated with each 

number defining this scale can be observed in Table 4. The transition between the qualities in Table 3 and the fuzzy sets 

associated with Table 4 leads to representing a risk criterion as a fuzzy set. Figure 1 shows the structure of the fuzzy sets 

associated with each criterion per risk scenario. In this way, these sets can be defined through three parameters: low (l), 

indicating the lower limit of each fuzzy set; (m) medium, indicating the central value or representative value of each 

criterion, while (u) upper (l ≤ m ≤ u) indicates the maximum value associated with each fuzzy set (Table 4). This set 

structure will allow the modelling of the uncertainty associated with characterising a risk scenario for the approach and 

landing phases. 
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Table 4. Fuzzy conversion scale 1-9 

Intensity of significance Triangular fuzzy scale 

1 (1, 1, 1) 

2 (1.6, 2.0, 2.4) 

3 (2.4, 3.0, 3.6) 

5 (4.0, 5.0, 6.0) 

7 (5.6, 7.0, 8.4) 

9 (7.2, 9.0, 10.8) 

 

 

Figure 1. Triangular scale 

Note. Adapted scale from The Intuitionistic Fuzzy ELECTRE model. International Journal of Management Science and 

Engineering Management (Rouyendegh & Erol, 2012, p. 3). 

 

Aggregate Fuzzy Importance Weight Matrix (AFIW) 

One of the matrices that integrate information from experts based on each criterion grouping each risk scenario is the 

AFIW (Aggregated Fuzzy Importance Weight) decision matrix, considering the limits defined by the fuzzy sets presented 

in Figure 1. 

𝐴𝐹𝐼𝑊𝑙𝑣,𝑖                  (1) 
 

Where: lv: represents each of the boundaries of the fuzzy sets l, m, u. i indicates each of the criteria that characterise 

each of the risk scenarios. The above matrix was consolidated from the decision matrices associated with each risk 

scenario's characterisation and each criterion that defines a risk scenario. According to the above, the decision matrices 

for each of the boundaries defining the risk scenarios are as follows: 

 

𝑤𝑙𝑣,𝑖 = ∑ 𝑚𝑑𝑙𝑣,𝑗,𝑖
𝑛𝑠
𝑗=1                 (2) 

 

Where:𝑤𝑙𝑣,𝑖: Represents the sum of each entry for the matrix 𝑙𝑣, for each j-scenario and each i-criteria. 𝑚𝑑𝑙𝑣,𝑗,𝑖: 

Represents the entry of the i-criteria associated with the j-risk scenario for the fuzzy level lv (l,m,u). 𝑛𝑠: Indicates the 

number of risk scenarios considered by the model. For the normalisation of each risk criterion, the estimation proceeds 

with the geometric mean according to Equation (3): 

𝑙𝑙𝑣,𝑗 = (𝑙1 × 𝑙2 × … × 𝑙𝑛𝑐)1 𝑛𝑐⁄                (3) 
 

Where: 𝑙𝑙𝑣,𝑗: indicates the fuzzy limit-based geometric mean (𝑙𝑣: {𝑙, 𝑚, 𝑢}), for each of the j-risk scenarios, where 𝑛𝑐 i 

represents the number of criteria associated with each risk scenario. Subsequently, the Fuzzy ELECTRE model 

normalises the weights associated with each criterion for each of the fuzzy limits (𝑙𝑣: {𝑙, 𝑚, 𝑢})  defining the fuzzy sets 

(Equation (4) (5)): 

𝑤̂𝑙𝑣 =  
𝐺̃𝑗

𝐺̃𝑇
=

(𝑙𝑗,𝑚𝑗,𝑢𝑗)

(∑ 𝑙𝑗,𝑘
𝑗=1 ∑ 𝑚𝑗,𝑘

𝑗=1 ∑ 𝑢𝑗,𝑘
𝑗=1 )

= (
𝑙𝑗

∑ 𝑢𝑗
𝑘
𝑗=1

,
𝑚𝑗

∑ 𝑚𝑗
𝑘
𝑗=1

,
𝑢𝑗

∑ 𝑙𝑗
𝑘
𝑗=1

 ).              (4) 
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𝑤𝑙𝑣̃ = [𝑤̃1, 𝑤̃2, … , 𝑤̃𝑛].                                              (5) 

      

 Building upon the decision matrices described in Equation (3), the model incorporates a fuzzy decision matrix, which 

is denoted and defined in Equation (6): 

𝑋𝑗,𝑖 =
𝑥𝑙𝑣,𝑗,𝑖

𝑛𝑙𝑣
                        (6) 

 
 

Where:𝑋𝑗,𝑖: represents the decision matrix for the j-scenario and i-criteria. From this matrix, the normalised decision 

matrix is obtained in Equation (7): 

𝑟𝑗,𝑖 =
𝑋𝑗,𝑖

∑ 𝑋𝑗,𝑖
𝑛𝑐
𝑖

                         (7) 

 
In order to determine the concordance and discrepancy matrices that allow the characterisation of a risk management 

scenario compared to a set of reference scenarios, the process involves obtaining the decision matrices. These decision 

matrices are denoted and defined in Equation (8): 

𝑣𝑗,𝑖 =  𝑟𝑗,𝑖 × 𝑤𝑙𝑣̂ .
                  (8) 

 

Dominance and Discrepancy Analysis 

According to the normalised decision matrices mentioned earlier, we proceed to determine the dominance and 

discrepancy of an evaluation of 𝑃𝑜 scenario about j-risk scenario used as a reference. In this manner, dominance is 

indicated and defined as follows: 

𝐶𝑎1𝑎2
1 =  ∑ 𝑤𝑙 ,𝑗∗           𝐶𝑎1𝑎2

2 =  ∑ 𝑤𝑚,𝑗∗          𝐶𝑎1𝑎2
3 =  ∑ 𝑤𝑢,𝑗∗               (9) 

 

The discrepancy for normalised decision matrices is denoted and defined as follows: 

𝐷𝑎1𝑎2
1 =

∑ +|𝑣
𝑎1𝑗+
1 −𝑣

𝑎2𝑗+
1 |𝑗

∑ |𝑣𝑎1𝑗
1 −𝑣𝑎2𝑗

1 |𝑗

, 𝐷𝑎1𝑎2
2 =

∑ +|𝑣
𝑎1𝑗+
2 −𝑣

𝑎2𝑗+
2 |𝑗

∑ |𝑣𝑎1𝑗
2 −𝑣𝑎2𝑗

2 |𝑗

, 𝐷𝑎1𝑎2
3 =

∑ +|𝑣
𝑎1𝑗+
3 −𝑣

𝑎2𝑗+
3 |𝑗

∑ |𝑣𝑎1𝑗
3 −𝑣𝑎2𝑗

3 |𝑗

               (10) 

 
Finally, the most dominant scenario is assessed, with the most significant differentiation from the other scenarios. 

𝐶𝑎1𝑎2
∗ =  √∏ 𝐶𝑎1𝑎2

𝑧𝑍
𝑧=1

𝑧
,         𝐷𝑎1𝑎2

∗ =  √∏ 𝐷𝑎1𝑎2
𝑧𝑍

𝑧=1
𝑧

,                          (11) 

 

 𝐶(𝑎1,𝑎2) ≥  𝐶,̅     𝐷(𝑎1,𝑎2) ≥  𝐷.̅                                    (12)  

Experimental Validation 

For the risk assessment during the approach and landing phases, the first step involved conducting an extensive 

literature review on aviation risk management, using as a reference the International Civil Aviation Organization 

Operational Safety Manual (ICAO, 2018) and the Federal Aviation Administration (FAA) Safety Management System 

Manual (FAA, 2022). This review aimed to identify a set of risk management criteria common to these operational ICAO 

safety manuals in the context of risk scenarios during an in-flight aircraft's approach and landing stages. Following the 

identification of these criteria, the next step was to define a series of risk scenarios, considering each criterion's qualitative 

characterisation as per the manuals. In this phase of the process, it is expected that the risk criteria can be grouped into 

five (5) risk categories or scenarios, in alignment with the Basel Committee on Banking Supervision's operational risk 

categories (AA, A, BB, B, C) and according to the papers proposed by Peña et al (2019). Thus, the AA risk scenario 

represents a scenario with an insignificant impact on operations, while C represents the scenario with the highest or 

significant risk (j-scenario). 
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     For the qualitative characterisation of the risk criteria (i-criteria) defining each of the previously defined risk 

management scenarios, the participation of a group of six (6) expert pilots in the field of aeronautical risk was enlisted. 

These pilots had validated experience in flying medium and heavy aircraft. Both captain and copilot pilots characterised 

the proven experience with varying years of experience. Thus, each risk criterion was evaluated for each scenario using 

qualitative features defined by the Saaty scale (Table 3). This characterisation was accomplished by implementing a 

structured survey where pilots responded to 38 questions. At this stage of the process, the expectation is to obtain the 

decision matrices. 𝑣𝑗,𝑖̃ (Equation 9), Which will allow assessing the dominance and discrepancy of a risk scenario 𝑃𝑜 

according to a series of reference scenarios.  

In the third stage, the structural stability of the model was evaluated against each of the previously defined reference 

risk scenarios (AA, A, BB, B, C). Here, the model is expected to exhibit behaviour similar to that of a neural autoencoder 

model (refer to any autoencoder reference), wherein the risk characterisation for any given scenario (Output: O) should 

resemble the risk structure defining an input scenario (Input: I). The model is anticipated to respond accurately to the 

input of the five reference risk scenarios. 

In a final stage, and to assess the dimensional stability of the proposed model, three additional risk scenarios were 

created by expert pilots, demonstrating varying levels of risk for the approach and landing phase of an aircraft (low (L), 

moderate (M), high (H)). Here, the model is expected to yield results such that for the L scenario, risk qualities align with 

categories AA, A; for the M scenario, the model should output risk characterisations corresponding to scenarios B and 

BB; While for risk scenario A, it is anticipated that the model will yield scenario C as the outcome. 

 

Case Study 

  For the development of the case study, a total of three (3) risk scenarios (AA, A, B) were considered, and a total of 

three (3) evaluation criteria will be employed, where C1 represents human factors, C2 represents the risk associated with 

the approach phase, while C3 represents the risk associated with the landing phase. The Saaty scale (Table 3) was used 

to characterise these risk scenarios, and the participation of two (2) expert pilots (DM1, DM2) was involved. In Table 5, 

the qualitative characterisation of any given risk scenario (𝑃𝑜), can be observed, while Table 6 presents the qualitative 

characterisation of the reference scenarios (AA, A, B) according to the expert pilots' considerations based on the 

established risk criteria for the case study. 

 

Table 5. Approximate Distance Matrix ADM 

ADM  

  Criteria DM1 DM2 

P0 

C1 G G 

C2 G G 

C3 VG G 
 

 

Table 6. Reference Risk Scenarios 

ADM 

Risk Scenario Criteria DM1 DM2 

AA  

C1 G G 

C2 B VG 

C3 B VG 

A 

C1 MB MB 

C2 VG G 

C3 G G 

BB  

C1 G MB 

C2 G MB 

C3 G MB 

 
According to the fuzzy sets defined by Saaty's scale (Table 4), the ADM matrix can be quantitatively expressed using 

three decision matrices, as shown in Tables 7, 8 and 9, where 𝑤𝑙𝑣,𝑖 is obtained from Equation (3), while the decision 

matrices are for the levels 𝑙𝑣: {𝑙 (𝑙𝑜𝑤𝑒𝑟), 𝑚 (𝑚𝑒𝑑𝑖𝑢𝑚), 𝑢 (𝑢𝑝𝑝𝑒𝑟)} an be estimated by using Equations (4), (5), and (6) for 

each j-risk scenario.  
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Table 7. Lower Fuzzy Decision Matrix 

Risk Scenario C1 C2 C3  
P0 4 5 6  
AA 4 3.8 3.8  
A 2.4 5 4  

BB 3.2 3.2 3.2  
𝒘𝒍,𝒊 13.6 17 17  
ll,i 4.97157201 6.72395081 6.63307547  

Average of the above values 18.3285983 

𝒘𝒍,𝒊,𝒏 0.27124671 0.3668557 0.36189759  

  

 

Table 8. Medium Fuzzy Decision Matrix 

Risk Scenario C1 C2 C3  
P0 5 6 7  
AA 5 4.5 4.5  
A 3 6 5  

BB 4 4 4  
𝒘𝒎,𝒊 17 20.5 20.5  
mm,i 6.6943295 8.65349742 8.57261888  

Average of the above values 23.9204458 

𝒘𝒎,𝒊,𝒏 0.27985806 0.36176154 0.3583804  

 

 

Table 9. Upper Fuzzy Decision Matrix 

Risk Scenario C1 C2 C3  
P0 6 7 8  
AA 6 5.2 5.2  
A 3.6 7 6  

BB 4.8 4.8 4.8  
𝒘𝒖,𝒊 20.4 24 24  
uu,i 8.53654393 10.6941652 10.6209152  

Average of the above values 29.8516242 

𝒘𝒖,𝒊,𝒏 0.35687228 0.44707215 0.44400992  

 
     Based on the above decision matrices, the construction of the AFIW matrix can be seen in Table 10 (Equation 1). 

 

Table 10. Aggregate Fuzzy Importance Weighted 

Criteria l m u 

C1 0.271246711 0.279858058 0.35687228 

C2 0.366855703 0.361761545 0.44707215 

C3 0.361897586 0.358380398 0.44400992 

 
     According to Tables 7, 8 and 9, we proceed with the derivation of the matrix 𝑋𝑗,𝑖 (Equation (6) from the averages 

of the inputs associated with each i-criteria and each j-scenario, resulting in the decision matrix as shown in Table 11. 

 

Table 11. Fuzzy Decision Matrix 𝑋𝑗,𝑖 . 

Risk Scenario C1 C2 C3 

P0 5 6 7 

 AA 5 4.5 4.5 

A 3 6 5 

BB 4 4 4 

Amount 8.66025404 10.404326 10.5 



Leal, E. P.  et al. / DUTCH J FINANCE MANAG, 6(2), 25209 9 / 15 
 

 

 
     In order to carry out the dominance and discrepancy analysis of scenario 𝑃𝑜 about the reference scenarios (AA, A, 

BB, B, C), the normalisation of the normalised decision was carried out  𝑟𝑗,𝑖 of Equation (7). 

 

Table 12. Normalised Decision Matrix (𝑟𝑗,𝑖) 

Risk Scenario C1 C2 C3 

P0 0.57735027 0.5766832 0.66666667 

AA 0.57735027 0.4325124 0.42857143 

A 0.34641016 0.5766832 0.47619048 

BB 0.46188022 0.38445547 0.38095238 

 
In Table 13 (lower), Table 14 (medium), and Table 15 (upper), the matrices can be observed 𝑣̂𝑗,𝑖, which will allow 

analysing the dominance and discrepancy of a scenario (𝑃𝑜) concerning each of the reference scenarios. These matrices 

are derived from the Equation (8). 

 

Tabla 13. 𝑣̂𝑙 matrix (lower) - Weighted normalised decision matrix 

Risk Scenario C1 C2 C3 

P0 0.15660436 0.21155952 0.24126506 

AA 0.15660436 0.15866964 0.15509897 

A 0.09396262 0.21155952 0.17233218 

BB 0.12528349 0.14103968 0.13786575 

 

 
Table 14.  𝑣̂𝑚 matrix (medium) - Weighted normalised decision matrix 

Risk Scenario C1 C2 C3 

P0 0.16157612 0.2086218 0.23892027 

AA 0.16157612 0.15646635 0.1535916 

A 0.09694567 0.2086218 0.17065733 

BB 0.1292609 0.1390812 0.13652587 

 

 
Table 15.  𝑣̂𝑢 matrix (upper) - Weighted normalised decision matrix 

Risk Scenario C1 C2 C3 

P0 0.2060403 0.257819 0.29600661 

AA 0.2060403 0.19336425 0.19028996 

A 0.12362418 0.257819 0.21143329 

BB 0.16483224 0.17187933 0.16914664 

 
According to above, in Table 16, Table 17, and Table 18, one can observe how the concordance matrices were 

obtained using Equation (9), comparing each entry of the 𝑃𝑜 vs. the reference scenarios AA, A, BB. The unit (1) value 

represents the dominance of a criteria in the scenario. 𝑃𝑜, scenario against the reference scenarios AA, A, BB. The value 

of unity (1) represents the dominance of a criterion in the 𝑃𝑜 scenario compared to criteria in each of the reference 

scenarios, while zero (0) signifies the absence of dominance. The final column in each of the concordance matrices 

represents the average of the entries that are unitary, multiplied by the entries in each of the fuzzy decision matrices 

(DM) for each fuzzy lv-limit (Table 7, Table 8, Table 9). 

 

Table 16. Low Concordance Matrix 

 C1 C2 C3 NF C1,a1,a2 

C1,0,1 1 1 1 3 5.32 

C1,0,2 1 1 1 3 5.28 

C1,0,3 1 1 1 3 4.92 
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Table 17. Medium Concordance Matrix 

 C1 C2 C3 NF C1,a1,a2 

C1,0,1 1 1 1 3 6.4 

C1,0,2 1 1 1 3 6.4 

C1,0,3 1 1 1 3 6 

 

 
Table 18. Upper concordance matrix 

 C1 C2 C3 NF C1,a1,a2 

C1,0,1 1 1 1 5 7.48 

C1,0,2 1 1 1 5 7.52 

C1,0,3 1 1 1 5 7.08 

 
Tables 19, 20 and 21 display the discrepancy values associated with each entry of the normalised decision matrix 

(Table 14 – Equation (10)). The final column in each of the aforementioned tables emerges due to the product between 

these matrices and each of the decision matrices (Tables 7, 8 and 9). 

 

Table 19. Low Discrepancy Matrix 

 C1 C2 C3 NF C1,a1,a2 

C1,0,1 0 0 0 2 0 

C1,0,2 0 0 0 2 0 

C1,0,3 0 0 0 2 0 

 

 
Table 20. Medium Discrepancy Matrix 

 C1 C2 C3 NF C1,a1,a2 

C1,0,1 0 0 0 2 0 

C1,0,2 0 0 0 2 0 

C1,0,3 0 0 0 2 0 

 

 
Tabla 21. Matriz de Discrepancia Upper 

 C1 C2 C3 NF C1,a1,a2 

C1,0,1 0 0 0 2 0 

C1,0,2 0 0 0 2 0 

C1,0,3 0 0 0 2 0 

 
     Finally, for the risk characterisation of the scenario 𝑃𝑜, the averages of concordance and discrepancy are obtained 

for each reference scenario defined for this case study. According to Equations (11) and (12), the dominance of scenario 

𝑃𝑜 regarding each of the reference scenarios employed for this study, this leads us to conclude that the risk scenario 𝑃𝑜 

can be grouped under category AA, as depicted in Figure 1. 

 

Table 22. Concordance and discrepancy matrix 

Concordance Discrepancy Conc-Disc Average 

C0,1 6.4 D0,1 0 0 6.4 

C0,2 6.4 D0,2 0 0 6.4 

C0,3 6 D0,3 0 0 6 

Average 6.26666667 Average 0   
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Figure 2. Location of risk scenario 𝑷𝒐 (línea vertical) (vertical line) with respect to the fuzzy sets defined for each 

reference scenario 

RESULTS 

This bibliographic review allowed the identification of five (5) risk factors and eighteen (18) characterisation criteria, 

as shown in Table 1. Based on the identification of these risk factors and criteria, a total of five (5) risk management 

scenarios were configured, in which a total of  five (5) aviation risk experts participated, as shown in Table 2. Here, the 

first factor identified in the literature was the human factor, in which the interaction between pilots is highlighted 

according to the training of each of the pilots and its influence on flight activities (ICAO, 2018). The second factor 

identified in the literature review was the risk associated with the approach phase, a critical flight stage in which the 

pilot receives authorisation from the control tower to initiate the approach and ends when the pilot reaches the final 

approach altitude (FAA, 2020). The third factor identified in the literature was the landing phase, the last critical stage of 

the flight phases, in which the aircraft touches down and ends when the aircraft comes to a complete stop, and the pilot 

must control the aircraft to touch down smoothly and stop safely (FAA, 2020). The fourth factor identified was the 

technical factor, in which aircraft design, construction, operation, and maintenance are highlighted. (ICAO, 2018). 

Finally, another of the factors identified was the factor associated with external factors, which are not directly related to 

the design, construction, operation, or maintenance of aircraft but which can affect aviation safety, such as meteorology, 

the conditions of the Bogotá and Rionegro airports, which were the scenarios taken into account in the case study as a 

reference for the survey conducted, as well as with air navigation facilities and services (ICAO, 2018). 

Based on this analysis, the survey with the expert pilots (DM1 to DM6) showed that, although the expert pilots had 

the same concept of operational risk according to the ICAO manuals, their perceptions in each of the factors and 

management criteria varied according to their experience and according to the risk scale they were evaluating. For the 

expert pilots DM1 and DM2, the risk scales showed that they were proportional to the risk scenarios proposed, where if 

there is a catastrophic scenario, the possibility of a safety event occurring is exceptionally high and so on with the rest of 

the scenarios, particularly for the human factor and the approach and landing phases, as they are critical phases (Cadena 

and García, 2023). For the expert pilot DM3, the factors in which a safety operational event can occur for a catastrophic 

and dangerous scenario are the approach and landing phase and external factors about the human factor since it took 

into account the conditions of the terrain near the airport and how difficult it is to land in these, as well as conditions 

associated with the length and width of the runways and their manoeuvring capacity in case a safety event can occur in 

the approach and landing phases (Erazo, 2023). For the expert pilots DM4 and DM5, the questions and risk management 

scenarios were indifferent to the risk scales proposed; for these expert pilots, the simple fact of presenting a possible risk 

already generated a high probability, which could generate a catastrophic or dangerous safety event in these two flight 

phases (Garces and Gonzalez, 2023). For the expert pilot DM6, the risk scales were more critical when minor or 

insignificant safety events occurred, and their curve was upward since he considered that the human factor played a 

fundamental role in the case of alertness and situational awareness when there was no news in flight (Del rio, 2023). It is 

worth mentioning that although the risk factors were evaluated individually, if an operational safety event occurs, they 

are all related to each other, and safety events with multiple combined causes can arise. 

6,4444; 06,4444; 06,4444; 0

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2,0000 2,5000 3,0000 3,5000 4,0000 4,5000 5,0000 5,5000 6,0000 6,5000 7,0000

B
el

o
n

g
in

g
 V

al
u

e

Fuzzy Sets

Location of risk scenario 𝑃𝑜

BB

A

AA

P0



Leal, E. P. et al. / DUTCH J FINANCE MANAG, 6(2), 25209 12 / 15 

 
 

 

 
After the surveys carried out with the expert pilots, the construction of five (5) risk scenarios (AA, A, BB, B, C) was 

carried out, it was evident that all the expert pilots agreed with the structure of each of the risk scenarios, when the 

reference scenario was configured according to the reference scenarios. In the particular case, the model identified the 

risk structure associated with the said scenario, as shown in Figure 2, and so on for the rest of the scenarios respectively, 

which clearly shows the stability of the model taking as a reference the traditional ELECTRE model and the proposed 

Fuzzy ELECTRE fuzzy model. 

This research shows that the risk factors identified in the literature are relevant to the aviation sector, and expert 

pilots' perceptions vary depending on their experience and the scale of risk they are evaluating. The construction of risk 

management scenarios based on the perceptions of expert pilots is a useful tool for identifying and prioritising risk 

factors and developing risk management strategies. 

 

 

Figure 3. Safety factor in provision by expert criteria Risk scenarios 𝑃0. 

 

In the final stage, the results produced by the proposed model in comparison to the characterisation of three 

theoretical risk scenarios suggested by expert pilots (Low (L), Moderate (M), High (H)) demonstrate that the model was 

sensitive to different levels of risk during the approach and landing phase. The results indicate that, for the low-risk level 

(L), the proposed model yielded an AA risk scenario, where it could be identified within Table 23 that the values tend 

to be very low in reference to Saaty's scale (Table 3), making it the least risky scenario. In the case of a moderate risk 

level (M), the model yielded a BB scenario where the predominant qualitative value in the expert survey rating was 

medium bad and good. Meanwhile, for the high-risk level, it produced a risk scenario in category C, tending to be a very 

low value in reference to the same Saaty scale, making it the riskiest scenario, as shown in Figure 2. The above illustrates 

the structural stability of the proposed model in relation to the characterisation of different risk scenarios based on criteria 

in the proposed scenarios according to the traditional model. 

 

Table 23. Additional risk scenarios 

 
 
After this, the analysis is carried out using the Fuzzy ELECTRE model, indicating the stability of said model, as 

shown in Figure 5. 
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Figure 5. Safety factor in the provision based on expert judgment for additional risk scenarios 

CONCLUSIONS AND RECOMMENDATIONS 

The proposed model allowed the characterisation of the risk associated with aeronautical operations in the approach 

and landing phases according to the international risk regulations of the International Civil Aviation Organization 

(ICAO) through the participation of a group of expert pilots. Due to its conception, the model allowed the 

characterisation of each risk scenario according to the experience of each pilot and according to the criteria that define 

each scenario, thus shaping a set of recommendations for risk management in terms of each of the criteria defining a risk 

scenario. 

Thanks to its dimensional stability, which allows it to identify a reference risk scenario automatically, and thanks to 

its structural stability, which allows it to recognise a scenario into five (5) standard risk categories automatically based 

on Basel II agreements, becoming the model as an ideal model for the evaluation of the associated risk, contributing to 

the operational safety management of the aeronautical sector as a proactive methodology in the early identification of 

the most common operational risks that may arise in the two most critical flight phases (approach phase and landing 

phase). 

As future work, it is desired that the model incorporate into its structure the experience in years of each expert pilot, 

as well as a series of weights that reflect the importance of each risk criterion. It is also desired to incorporate the relevance 

for each of the criteria based on statistics provided by civil aviation regulatory bodies and the integration of quantitative 

information from flight data recorders to expand this study to all phases of flight. This will allow for improving the 

flexibility of the model in terms of the experience of the pilots and the importance that each aeronautical institution of 

the countries gives to each of the criteria that define each risk scenario and the accuracy of the data obtained from the 

operation of the aircraft. 
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